International Mathematics Competition for University Students

July 27 - Aug 2 2015, Blagoevgrad, Bulgaria

Home

Day 1
    Problem 1
    Problem 2
    Problem 3
    Problem 4
    Problem 5

Day 2
    Problem 6
    Problem 7
    Problem 8
    Problem 9
    Problem 10

Results
    Individuals
    Teams

Download
    Day 1 questions
    Day 1 solutions
    Day 2 questions
    Day 2 solutions

Official IMC site

Problem 10

10. Let $n$ be a positive integer, and let $p(x)$ be a polynomial of degree $n$ with integer coefficients. Prove that $$ \max_{0\le x\le1} \big|p(x)\big| > \frac1{e^n}. $$

Proposed by Géza Kós, Eötvös University, Budapest

  Hint    Solution